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1 Introduction

In this letter we analyse the meta-stable point of a simple Intriligator, Seiberg and Shih

(ISS) [1] model, within the framework of supergravity. This allows us to cancel the cosmo-

logical constant, which we opt to do by the simplest possible method: adding a constant,

W0, to the superpotential. This is sufficient to generate a physically reasonable gravitino

mass and balance the new negative contribution to the potential against the original posi-

tive contribution coming from the ISS potential.

We recompute the one-loop effective potential in supergravity and use this to compute

the gravitational backreaction on the global vacuum.1 The perturbations are shown to

be small, as one expects from gravitational corrections, but non-trivial. We stress that

it is necessary to consider gravitational corrections, even though we know they are small.

They are important when determining the expectation values of the fields, most notably

1For an earlier study with somewhat different findings, see [2]. An interesting study that coupled a

realistic moduli sector to an ISS model can be found in [3].
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the moduli, but the remaining fields are shifted more than dimesional analysis would sug-

gest. The most interesting effect is the generation of non-zero, but Planck suppressed,

F-terms for the magnetic quarks. Hence, there appear two distinct scales in the sector that

breaks supersymmetry.

It is interesting to calculate the relative importance of several mediation mechanisms in

this setup, specifically anomaly, gravity and gauge mediation. We give order of magnitude

estimates for the soft masses spectrum generated by these three mechanisms and argue

that the spectrum can have a striking gap between the gaugino masses and the soft scalar

masses. This is reminiscent of split SUSY [4], but the split is not allowed to be arbitrarily

large since it is constrained by the requirement that V = 0 in the meta-stable minimum.

We note that setting V = 0 at tree-level is clearly not sufficient to guarantee it remains

close to zero when loop corrections are included. As discussed in detail in [5, 6] one

generically expects both the logarithmic corrections present in the SUSY theory (albeit

with gravitationally corrected masses) and quadratically divergent contributions, Vquad. =
1

32π2 STrM2Λ2, to be present if the theory is cut-off at Λ. However, as noted in [6] and

discussed further in [7], this contribution is determined by the geometry of the Kähler

potential and the number of degrees of freedom in the effective theory, and in principle it

is possible for it to vanish. Even if it remains, its presence is not necessarily particularly

damaging, since it is fixed by the size of m3/2.

The potential can then be parametrised as (with MP set to 1 and Vlog denoting the

logarithmic one-loop contribution):

V = VF + Vlog + (Z − 3)m2
3/2 (1.1)

where Z is a parameter encapsulating our ignorance about UV effects and is O( 1
32π2 ) to

O(NTOT

32π2 ), where NTOT is the total number of chiral fields. If Z < 0, the condition V = 0 is

satisfied by a smaller W0 than is required to cancel the tree-level potential. Since we know

that |Z| ∝ Λ2 this implies that it must be possible to chose a cut-off small enough that W0

will not change dramatically, and our results will be qualitatively unchanged with respect

to the case with the quadratically divergent term omitted. We have assumed, and prove in

appendix B, that the derivatives of Vquad. are similar in form and magnitude to Vtree’s.

It is interesting to note that Vquad. can play an important role in the potential despite

being generated by gravity, in close analogy to the role played by −3eK |W |2. This is in

contrast to the gravitational corrections to the logarithmic potential, which are negligible

in comparison to the globally supersymmetric terms. Naturally, we still have to re-tune to

get V = 0, but the loop corrections do not increase the degree of tuning required. Finally,

if Z & 3 it is clear that these models break down and the cosmological constant cannot be

tuned to zero. This will not be the case unless the cut-off is close to the Planck scale. In

these models, the relevant cut-off is the scale at which the magnetic description is no longer

valid as supersymmetry is best described by the low energy variables in the magnetic theory.

We have implicitly assumed, in using N = 1 supergravity formalism that the UV

preserves one supersymmetry. On top of this, for simplicity’s sake, we assume that the sole

source of SUSY breaking is the ISS sector, with the constant W0 setting the scale of m3/2,
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essentially postulating that W = WISS + WUV,
〈
WUV

〉
= W0 6= 0, that FUV ≪ FΦ and

that the UV has been decoupled. While the constant can be dynamically generated in a

explicit model we do not attempt to do so here (for an example where a KKLT model [8] is

used in the UV see [9]). Finally we note that the UV’s contributions to the Kähler geometry,

and hence Vquad., are uncalculable, but should be small on dimensional grounds.

2 Global ISS review

ISS showed that meta-stable SUSY breaking is possible in a wide class of remarkably simple

models. One of their main examples is supersymmetric QCD with Nf flavours and Nc

colours. If one lies in the free magnetic range, Nc < Nf < 3
2Nc, then the low energy theory

is strongly coupled, but admits a dual interpretation in terms of IR-free, magnetic variables.

The tree-level potential in the magnetic theory is given by an R-symmetry preserving

O’Raifeartaigh model [10] and so SUSY has to be spontaneously broken: Fi = 0 cannot be

satisfied for all fields.

The tree-level superpotential in the magnetic theory is given by:

Wtree = hTr
(
φΦφ̃

)
− hµ2Tr(Φ) (2.1)

where Φ transforms as Nf × Nf , φ: (Nf , N), φ̃: (Nf ,N), N = Nf − Nc, the number of

squark flavours in the magnetic theory and we denote the parts of Φ that will later obtain

expectation values as follows: Φ =

(
Φ1 0

0 Φ0

)

. The Kähler potential is canonical.

Considering the tree-level superpotential in isolation one finds that the lowest energy

state is a moduli space parametrised by

Φ =

(
0 0

0 Φ0

)
, φ =

(
φ0

0

)
, φ̃T =

(
φ̃0

0

)
, φ0φ̃0 = µ2

INc×Nc . (2.2)

Since SUSY has to be broken, the potential is positive definite and is found to have

an expectation value of V = h2Ncµ
4. When the one-loop effects are included the moduli

space is lifted and, aside from flat directions identified with Goldstone bosons, a unique

minimum is found at:

Φ = 0, φ0 = φ̃0 = µ INc×Nc . (2.3)

In addition one must include the non-perturbative, R-symmetry violating contribution:

W = NhNf /N
(
Λ
−(Nf−3N)
m det(Φ)

)1/N
. (2.4)

Notice that the exponent of Λm, − (Nf − 3N) = −(3Nc − 2Nf ), is always negative in the

free magnetic range. Hence the coefficient of the determinant grows as the cut-off shrinks.

Since the non-perturbative piece is R-symmetry violating a SUSY preserving minimum

must exist [11], created by the non-perturbative piece. In global SUSY2 this must be at a

lower energy than the SUSY breaking minimum.

2The situation could be improved in Sugra if the SUSY preserving point also had W = 0 and the SUSY

breaking point V = 0, but this is difficult to obtain, and not the case here. In-fact, the difference in the

energy density is increased by the negative contributions from W 6= 0.
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2.1 A note on dynamical scales

We now calculate the relationship between the dynamical scales, Λ and Λm, of the electric

and magnetic theories, respectively. We make use of the relevant part of the dictionary

given in ISS’s paper and the duality relation, given by:

h =

√
αΛ

Λ̂
(2.5)

and

Λ3Nc−Nf Λ
2Nf−3Nc
m = (−1)Nf−NcΛ̂Nf . (2.6)

where Λ̂ is a dimensional parameter in the magnetic theory, related to the electric quark

mass, m0, and the magnetic quark mass, µ through the following relation: Λ̂ = − µ2

m0

If we assume that the order one number, α, appearing in the Kähler potential for the

electric mesons3 is simply 1 and that h = 1, then it follows that all three scales, Λ, Λm and

Λ̂ are identified, up to flavour dependent phases. Above this scale the electric description

is valid, while the magnetic description is valid below.

3 Locally supersymmetric ISS

If one simply promotes ISS to having a local supersymmetry without including any addi-

tional physics, the results are not significantly perturbed near the minima of the SUSY

theory.

However, the picture changes if any other terms appear in the superpotential. Any

new physics that generates a non-zero 〈W 〉, necessary to have a finite gravitino mass and

cancel the cosmological constant, will at least interact gravitationally with the moduli.

Even the simplest possible modification, the addition of a small (≪ 1) constant, W0,

to the superpotential, is sufficient to push the pseudo-moduli to large expectation val-

ues. This is not altogether surprising since the global, tree-level potential is independent

of the pseudo-moduli and so their entire potential is given by Planck suppressed, non-

renormalisable operators once supergravity corrections are included. As such, the natural

scale for their expectation values is Mp.

However, one-loop effects should not be ignored. In the vicinity of the metastable point

the logarithmic one-loop potential generates mass corrections of order h2µ multiplied by

a loop suppression factor. For comparison, the typical contribution to the logarithmic

part of the one-loop potential from the gravitational effects is (h2µ3/MP )1/2.4 Hence,

the gravitational corrections to the logarithmic one-loop potential, while non-zero, will be

small. This does not hold for the quadratic corrections which give mass corrections of order

hµ, suppressed by the cut-off and a loop factor.

3KM = 1

α|Λ|2
TrM†M .

4This can be derived assuming that W0 ∼ µ2 which will be required for cancellation of the cosmological

constant; hKiW0F gives a contribution to the mass square matrix of order h2KiW0, i.e. h2µ3.
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In the following section we will consider the following simplified model, with the non-

perturbative piece removed. This will allow us to isolate the effects of the constant, W0,

appearing as follows:

W = hTr
(
φΦφ̃

)
− hµ2Tr(Φ) + hW0 (3.1)

The presence of this constant slightly changes the global SUSY minimum, introducing a

modest amount of SUSY breaking. One can tune the constant such that the superpotential

vanishes with the F-terms, but it is not possible to achieve this if we wish to have V = 0

at the metastable point.

The constant creates an AdS minimum with a negative expectation value equal in

magnitude to the global ISS theory’s, namely VADS ≃ −h2Ncµ
4. However, the difference

between V in the AdS minimum and in the metastable minimum is essentially the same

as the the difference between V in the SUSY minimum and in the metastable in the global

case. The height of the barrier is also essentially the same in both cases.

Finally our numerical studies demonstrate that if W0 ∼ µ2 then Φ0 gets expectation

values of order 1, but the expectation value shrinks as W0 → 0, going to zero in that limit.

4 One loop potential

Since the interplay between the supergravity and one-loop effects is so important to our

results it is worth discussing the details of the one-loop calculation, highlighting the ap-

proximations we have made. First of all we note that the mass matrices, M, in the

well-known formula:

Vone-loop = Vquad. + Vlog =
1

32π2
STrM2Λ2 +

1

64π2
STrM4 log

M2

Λ2
(4.1)

are given by the supergravity corrected masses [12, 13]. This modifies the mass squared

matrices at the level of µ4 (i.e. a rather small shift, but calculable and necessary for the

computation of Vquad.). The term quadratic in M is generically ∼ m2
3/2Λ

2 whereas the

contribution from Vtree is −3m2
3/2, hence the M2 term can be disregarded if Λ ≪ MP ,

but not otherwise. Unfortunately eq. (4.1) is modified when V 6= 0 (for discussions of

this point, see [5] and [14]). Even though we are expanding about V = 0, there will be

corrections to this expression since V = 0 is only true at that point and in the Goldstone

directions. We expect there to be both logarithmic and quadratic corrections stemming

from this. The quadratic terms we can ignore if Λ ≪ 1, but the logarithmic terms we

have to consider more carefully. We note that all the operators in [14] that contain V are

dimension 8 and so the largest possible linear contribution would be O(W 2
0 µX) ∼ µ5X

where X is a generic field. This should be compared to the largest contribution from

gravity at tree-level, XFW0 ∼ µ4X, and so we expect these effects to be negligible.

As noted in [1] and [15] one can capture some information about the effective potential

purely by integrating out fields and calculating the correction to the Kähler potential.

However, as described in the appendix of [1], this is an approximation only valid to 2nd

order in F , we also note that it is harder to work with numerically. Hence we opt to

calculate the full one-loop potential. It is nonetheless interesting to compare these two

– 5 –
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approaches and we see that the (somewhat arbitrary) corrections to the Kähler potential

introduced in [16], created an explicit cut-off dependence into the effective potential for Φ0

and hence 〈Φ0〉 ∝ Λ2. This dependence is not present in global theory and we found that

only a very mild dependence was introduced by including supergravity corrections to the

logarithmic effective potential, as we demonstrate in section 6.1. Regrettably, this does not

provide a rigorous test of the two approaches, due to the Kähler corrections being more

postulated than derived in [16].

It is then not entirely surprising that our results differ markedly from those of [16]. This

manifests itself primarily in our predictions for the expectation value of Φ0 which we find to

be significantly smaller than µ, irrespective of the value of the cut-off. This means that our

model does not appear to be a good candidate for gauge mediation, since 〈Φ0〉2 < Fφ0
. How-

ever, the gravitational corrections to the quarks F-terms open the possibility that they could

couple to a mediation sector and generate soft terms. We will return to this in section 7.

4.1 Analytic properties of STrM2

For a canonical Kähler potential, the quadratic one-loop potential is given by

Vquad. =
STrM2Λ2

32π2
=

Λ2eK

16π2
(N2

f + 2NfNc − 1)

(
∑

i

(Wi + XiW )
2

)
− Λ2eK

8π2
(N2

f + 2NfNc)W
2.

(4.2)

Where fields are taken to be real and Xi runs over all fields. Re-writing this in terms of

the tree-level potential gives:

Vquad. =
Λ2

16π2
(N2

f + 2NfNc − 1)Vtree +
Λ2eK

16π2
((N2

f + 2NfNc) − 3)W 2 (4.3)

and hence

Vtree + Vone-loop =

(
(N2

f + 2NfNc − 1)
Λ2

16π2
+ 1

)
Vtree +

Λ2

16π2
(N2

f + 2NfNc − 3)eKW 2 + Vlog

(4.4)

The addition of Vquad. to the potential reinforces the tree-level solution, up to addi-

tional, gravitationally suppressed contributions from the final term in eq. (4.3).

On dimensional grounds, the SUSY parts of the Sugra F-terms will provide the dom-

inant contributions to Vquad., except for the moduli fields, which have flat F-terms at

the SUSY minimum. This means we expect the minima of Vquad. and Vtree, for the

non-moduli fields, to coincide at leading order in µ (assuming the moduli are taken to be

∼ µ2). However, the gravitational corrections given by W 2 and by KiW come in at the

same order of magnitude and hence we do not expect that the same Φ0 will minimise both

Vquad. and Vtree. It is nonetheless clear from eq. (4.3) that, if (N2
f +2NfNc)

Λ2

16π2 ∼ 1, the

quadratically divergent corrections will be of equal importance to the tree-level.

We may also compute the value of W0 required to cancel the cosmological constant:

W0 =




e−KVlog +

(
N ′

fΛ′2 + 1
)

h2Ncµ
2

3
(
N ′

fΛ′2 + 1
)
− (N ′

f − 2)Λ′2




1/2

(4.5)
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Where Λ′ = Λ
4π and N ′

f = N2
f + 2NfNc − 1.

The minima of the logarithmic potential and tree-level potential need not coincide,

which is fortunate since the tree-level potential is minimised by Planck scale moduli vevs.

Therefore the addition of the logarithmic potential to the tree-level will shift the minimum

away from the tree-level, with the size of the shift being determined by the strength of

the coupling constants and the relative importance of gravity. Inclusion of the quadratic,

one-loop potential will shift the minimum closer to the tree-level result for all fields as

discussed in appendix B.

4.2 Remarks on methodology

Since computation of Vlog requires diagonalisation of M2 it is significantly more involved

than the calculation of the quadratic piece. It is possible to make some analytic progress by

using the one-loop moduli masses derived in [1] and tree-level gravity corrections. However,

more involved analytic calculations, such as computing the logarithmic piece of eq. (4.1)

(with or without gravitational corrections to the masses) or computing corrections to the

Kähler potential, as detailed in [15] are extremely challenging since they both rely upon

diagonalization of large mass matrices. We can make some approximate analytical state-

ments by observing that the direct gravitational corrections to the logarithmic effective

potential for Φ0 given in [1] are small and overwhealmed by the non-gravitational terms.

Then using the global effective potential, derived at the global SUSY minimum, will only

introduce small errors if it does not vary too rapidly across field space and the combination

of this and the Sugra tree-level potential gives vevs close to the global vevs. To see if this

approximation was valid we opted to calculate the effective potential numerically, using

the approach described in the following section. One can make progress by observing that,

at the minimum, it is possible to compute the series expansion the one-loop potential up

to second order in the fields. This leaves enough information to confirm that this is point

is both a stationary point and a minimum. Eq. (4.1) can then be computed for pairs of

fields at a time, with all others frozen. With the problem broken into several managable

parts it is possible to attack it numerically as described in the following section.

However computing the effective Kähler potential is a more difficult task, since one

needs to know the series expansion of the matrix of second derivatives of the inverse Kähler

potential up to second order in the fields. This is in addition to knowing the Kähler

potential up to second order. To calculate the second derivatives of the inverse Kähler

potential to second order we would need to calculate the Kähler potential to fourth order,

doubling the number of fields we have to consider simultaneously. This alone shows that

this approach should be significantly more time consuming.

As a technical point we note that the Coleman-Weinberg contribution to Φ0’s mass

derived in ISS is not valid away from the global ISS minimum. If we only include the

one-loop masses derived in [1] and allow all fields to vary, then the numerical solution

has negative eigenvalues in the Hessian. This apparent instability can be shown to be an

artifact caused by the mismatch between the global minimum (the point at which ISS’s

masses are correct) and the true minimum (in which they are not). While these effects are

small we can re-calculate the one-loop contribution at the minimum of the tree-level plus

– 7 –
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one-loop potentials, we can trust our results. Unfortunately, since 〈Φ〉 6= 0 and it is no

longer a simple matter to determine the Goldstone directions, the calculation of the masses

must be done for all fields and becomes significantly more involved.5 As a result of this,

we discovered non-trivial contributions to not only Φ0’s potential, but φ0 and Φ1’s.

Our approach was to start at a point close to the global ISS minimum, compute the

one-loop potential to second order in the fields at this point and then minimise the tree-

level + one-loop potential.6 This new point was then used to re-compute the one-loop

potential, allowing us to minimise yet again. This process was repeated until the solution

converged and the eigenvalues of the matrix of second derivatives of the full potential were

consistent with the expected number of Goldstones (which would not be the case if the

effective potential were computed away from the minimum).

Regrettably, this is not sufficient to make the computation tractable for large numbers

of flavours, as the computation time grows rapidly with the number of flavours and Nf = 4,

Nc = 3 is already takes prohibitively long. However, for Nf = 3, Nc = 2 the one-loop

potential can be computed in a reasonable amount of time.

5 Non-perturbative contributions

To estimate the value of the cut-off for which the non-perturbative piece (2.4) dominates,

and destabilises the potential, we calculate the second derivative of the non-perturbative

correction to the potential, evaluated at the minimum of the tree-level + one-loop effective

potential. If
∂2Vnon-pert.

∂Φ2 >
∂2

„

Vtree+Vone-loop

«

∂Φ2 , then the non-perturbative piece will

likely dominate and the fields will roll to the supersymmetric minimum. This allows us to

put rough lower bounds on the cut-off, such that the meta-stable solution is stable. This is

in contrast to the global case in which the non-perturbative effects vanish in the tree-level

+ one-loop minimum. Considering, for simplicity’s sake, Nf = Nc + 1:

∂2Vnon-pert.

∂Φ1∂(Φ0)i
∼

Nf−1∑

j

2hNf /NΛ
−(Nf−3)
m




Nf−1∏

k 6=j,i

(Φ0)i



 (−hµ2) (5.1)

where all higher powers of Φ have been discarded.

Close to the global SUSY minimum the dominant contribution to the effective potential

is the globally supersymmetric effective potential derived in [1]. This means that

∂2Vlog

∂Φ2
ii

∼ log(4) − 1

4π2
h4µ2 (5.2)

5This is in contrast to global ISS, or indeed ISS with no additional physics, because in our case 〈Φ〉 6= 0.

When 〈Φ〉 = 0 the Goldstone bosons are solely linear combinations of the magnetic quarks, but when

〈Φ〉 6= 0 it contributes to the breaking of SU(Nf ) and hence the Goldstone bosons. This means that any

contributions to the Goldstone bosons’ potential that violate the original SU(Nf ) symmetry give (spurious)

masses to the Goldstones. Hence one should compute the full potential, at least to 2nd order in the fields,

to obtain reliable results.
6This avoids the need to diagonalise the mass matrix analytically. Which would be challenging because

it is both large and has numerous independent variables. Since we only need the local properties of the

potential we only need calculate the its numerical values after small variations in the fields. If one wanted to

know the values of the potential for all values of the fields, it would be necessary to diagonalise analytically.

– 8 –



J
H
E
P
0
3
(
2
0
0
9
)
1
4
7

and hence if
∑

j 2h
Nf +N

N Λ
−(Nf−3)
m

(∏Nf−1
k 6=j,i (Φ0)i

)
> log(4)−1

4π2 h4 it is clear that the non-

perturbative piece will dominate and the fields will evolve into the SUSY minimum. How-

ever, we can see that, even if the cut-off has the same order of magnitude as µ, the

non-perturbative potential alone will not have a significant effect. It is suppressed by

the small expectation values of Φ0, given by the perturbative potential. If 〈Φ〉 ≫ µ the

non-perturbative potential can dominate, but this is far from the case here.

We also note that, while there are non-perturbative contributions to the one-loop effec-

tive potential, these effects are generically small. They will only need close consideration

when 〈Φ〉 ≫ µ and even in this case, the non-perturbative contributions to the tree-

level will be more important, except at singular points where the perturbative expansion

breaks down.

Finally, the complete calculation with a fully realistic number of flavours is numerically

intractable, and we are only able to compute everything for the case where Nf = 3 and

Nc = 2. While this case does not correspond to a dualized theory, it does capture the

important low energy phenomena: the rank condition still holds and SUSY is still broken

spontaneously. However, the non-perturbative contributions are qualitatively different.

Firstly the coefficient is automatically 1, irrespective of the size of the cut-off, and the

determinant piece is larger by roughly h2µ−2, since it contains one fewer power of Φij.

This means that the non-perturbative piece can come to dominate, even though we know

that it would be negligible in the Nf = 4, Nc = 3 case. As a result, we were forced

to introduce a constant, Λnon-pert., multiplying the non-perturbative piece and find the

largest stable value, before we could be certain that the non-perturbative effects were under

control. More specifically

Wnon−pert → Wnon−pert = Λnon-pert.NhNf /N
(
Λ
−(Nf−3N)
m det(Φ)

)1/N
(5.3)

in what follows.

6 Supersymmetry breakdown

6.1 Numerical results

We now present the numerical analysis of our model. In the following we confirm that the

metastable minimum exists in the presence of gravity, show where the numerical results

diverge from the analytical approximations and explain why these deviations are larger

than dimensional analysis suggests. Where possible we compare our results with those

presented previously, demonstrating that they can be recovered if the same assumptions

about the one-loop potential are made (the assumptions used to derive the analytical

approximations), but that relaxing these assumptions introduces the shift just discussed.

Our main observation in this section is that one must be careful about estimating the

error introduced by neglecting gravitational corrections to the one-loop effective potential.

As far as the logarithmic one-loop potential is concerned, it is necessary to compute it in

full, though the gravitational corrections can safely be ignored.7 The quadratic one-loop

7We included them in our numerical analysis for completeness, but the corrections proved to be small.
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Nf 3 3 3 3 3 3 3

N 1 1 1 1 1 1 1

µ 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7

Λnon-pert. 0 2.00 10−6 2.00 10−4 2.00 10−2 4.00 10−2 4.40 10−2 4.60 10−2

m3/2 1.52 10−14 1.52 10−14 1.52 10−14 1.52 10−14 1.52 10−14 1.52 10−14 1.52 10−14

〈φ0〉 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7

〈Φ0〉 −6.33 10−12 −6.33 10−12 −6.33 10−12 −7.95 10−12 −1.57 10−11 −2.10 10−11 −2.56 10−11

〈Φ1〉 −1.21 10−13 −1.21 10−13 −1.23 10−13 −3.71 10−13 −1.16 10−12 −1.66 10−12 −2.08 10−12

Fφ0
/µ2 −7.43 10−7 −7.43 10−7 −7.56 10−7 −2.50 10−6 −8.03 10−6 −1.15 10−5 −1.45 10−5

FΦ1
/µ2 −1.07 10−2 −1.07 10−2 −1.07 10−2 −1.07 10−2 −1.07 10−2 −1.07 10−2 −1.07 10−2

Table 1. Solutions for V=0, with the non-perturbative piece included. The dependence on the

non-perturbative contribution is shown to be very small, but as Λnon-pert. exceeds 2 10−2 it rapidly

comes to dominate. The value of m3/2 is identified with W0, up to small corrections, supressed by

additional powers of µ.

potential must be included. While the quadratic one-loop potential is zero in the absence

of gravity, the gravitational corrections generate a potential similar to the gravitational

corrections to the tree-level, but controlled by an overall factor of Λ2

32π2 - as we show in

appendix B. These potentials, combined with the tree-level, must be computed in order to

obtain a reliable leading order estimate in general, with the quadratic potential being of

particular interest if the number of fields is large and the cut-off close to the Planck scale.

In table 1 the row Λnon-pert. is the coefficient of the non-perturbative piece, introduced

to compensate for the missing powers of Φij that would be present in the determinant for a

realistic number of flavours. Note, the F-term for Φ0 is not included since it is only shifted

by corrections of order µ3, so FΦ0
= hµ2 + O(µ3). For physically reasonable values of µ

this effect is negligible. Also, Λ = 10−2, (i.e. the string/GUT scale) throughout tables 1

and 3. The reason is, this value of Λ is sufficiently small and ensures that the quadratically

divergent loop correction to the potential only creates a small shift from the tree-level

result, leaving us with the logarithmic piece whose sensitivity to the value of the cut-off is

very weak.

Since the superpotential can be written W = WISS + hW0, and 〈WISS〉 = 0 in the

global limit, we find that m3/2 = eKhW0 + O(µ3) ≃ hW0. Hence we only include m3/2 in

the tables. Also, in all the tables h is taken to be 1. Our main result, concerning the soft

mass spectrum, is independent of the precise value of h, though we retain full theoretical

control in a surprisingly small range. If h ≪ 10−1 the Φ0 modulus runs off to the Planck

scale as the gravitational effects overwhelm the one-loop contributions (since µ must go

like µ → µ
h , as h varies from 1, and hence gravitational effects increase in relevance as h

shrinks). However, if h ≫ 1 the theory becomes strongly coupled.

Our numerical studies show that the non-perturbative piece is under control, that

there is only a very mild, logarithmic cut-off dependence, when supergravity corrections

are accounted for, and that the main features of the model are independent of µ, assuming

µ ≪ MP . These results can be seen in, respectively, tables 1, 2 and 3.
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Nf 2 2 2 2 2 2 2

N 1 1 1 1 1 1 1

µ 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7

Λ 1 10−1 10−2 10−3 10−4 10−5 2 10−7

m3/2 1.04 10−14 1.06 10−14 1.08 10−14 1.09 10−14 1.11 10−14 1.13 10−14 1.16 10−14

〈φ0〉 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7 1.41 10−7

〈Φ0〉 −4.29 10−12 −4.36 10−12 −4.43 10−12 −4.50 10−12 −4.57 10−12 −4.64 10−12 −4.75 10−12

〈Φ1〉 −4.78 10−14 −4.44 10−14 −4.16 10−14 −3.91 10−14 −3.70 10−14 −3.51 10−14 −3.25 10−14

Fφ0
/µ2 −2.64 10−7 −2.39 10−7 −2.17 10−7 −1.99 10−7 −1.83 10−7 −1.68 10−7 −1.47 10−7

FΦ1
/µ2 −5.66 10−3 −5.46 10−3 −5.27 10−3 −5.09 10−3 −4.93 10−3 −4.77 10−3 −4.53 10−3

Table 2. Solutions for V=0 where the non-perturbative and one-loop quadratic pieces have been

neglected. These data show the logarithmic dependence of Φ0 on the cut-off.

From the data in table 2 we can see that for µ =
√

2 10−7, 〈Φ0〉 = −4.295 10−12 +

6.886 10−14Log10(Λ). Table 3 shows that there are no significant changes as one varies

µ. In table 1 Λnon-pert. is varied and the non-perturbative term becomes relevant for

Λnon-pert. > 4 10−2. Since we expect the non-perturbative term to be suppressed by an

extra power of Φ when Nf = 4, corresponding to Λnon-pert. ∼ Φ ∼ µ2 = 2 10−14 it is

clearly well under control.

6.2 Analytic approximations

In addition we can compare our numerical results to analytical approximations. Because of

the expected smallness of the fields it is sufficient to take the leading order of µ when search-

ing for the minimum. The gravitational corrections to the logarithmic one loop potential

appear with higher powers of µ than the SUSY effective potential and can be neglected in

the analytical approximation, while the quadratic corrections are both relevant and readily

calculable. The solution to ∂V
∂Φ0

= 0, derived in appendix B, under the assumption8 that

Vlog is described by eq. (B.7), is given by:

〈Φ0〉 =
16π2W0(1 + Λ′2

2 (N ′
f + 2))

h2(log(4) − 1)
+ O(µ4) (6.1)

Comparing this with the numerical results, obtained using the full one-loop potential,

shows that they disagree at the percent level. For example, it gives 〈Φ0〉 = −4.25 10−12,

with Nf = 2, µ =
√

2 10−7, Λ = 1 and Vquad. neglected (i.e. Λ′ = 0), to be compared

with table 2. Since the difference is far greater than the error we expected to be intro-

duced by ignoring gravitational corrections to the one-loop potential, we conclude that the

assumption that the one-loop potential is given by eq. (B.7) is not justified in the presence

of gravity. This deviation is a consequence of the changes in the effective potential for

Φ0 caused by moving from the global SUSY minimum to the Sugra minimum, in Φ1-φ0

8That the one-loop potential is given entirely by the globally supersymmetric one-loop potential derived

in [1].

– 11 –



J
H
E
P
0
3
(
2
0
0
9
)
1
4
7

Nf 2 2 2 2

N 1 1 1 1

µ 10−7 10−6 10−5 10−4

m3/2 5.36 10−15 5.45 10−13 5.54 10−11 5.63 10−9

〈φ0〉 9.97 10−8 9.97 10−7 9.98 10−6 9.98 10−5

〈Φ0〉 −2.21 10−12 −2.25 10−10 −2.28 10−8 −2.32 10−6

〈Φ1〉 −2.10 10−14 −1.97 10−12 −1.86 10−10 −1.77 10−8

Fφ0
/µ2 −1.56 10−7 −1.42 10−6 −1.31 10−5 −1.20 10−4

FΦ1
/µ2 −5.30 10−3 −5.12 10−3 −4.95 10−3 −4.79 10−3

Table 3. Solutions for V=0 where the non-perturbative and one-loop quadratic pieces have been

neglected. Here, the µ dependence is shown.

space. If we artificially shift all fields except Φ0 to their global SUSY vevs then the Sugra

corrected logarithmic effective potential for Φ0 tends to the SUSY effective potential. The

gravitational corrections to Vlog at the global SUSY minimum are negligible, as expected.

It is also interesting to see that at this point in Φ1-φ0 space the one-loop correction to the

potential contains a term linear in Φ0 and hence is minimised by 〈Φ0〉 6= 0.

We also notice similar behaviour when Vquad. is included. For Nf =2, µ=
√

2 10−7, Λ=

1 eq. (6.1) predicts 〈Φ0〉 = −4.37 10−12, but the minimum appears at 〈Φ0〉 = −4.46 10−12.

As noted in appendix A, when W0 = 0, the expectation values of the quarks are

determined by the global minimisation conditions modified by the expectation value of the

tree-level potential. Cancelling the cosmological constant at tree-level, via W0, recovers

the global result, up to small corrections induced by W0. When the loop corrections are

removed, Φ → 0 and Nc = 1 we find

〈φ0〉2 =
1

2

(
−1 + 2µ2 − 2W 2

0 +
√

1 − 4Ncµ4 + 12W 2
0 − 8µ2W 2

0 + 4W 4
0

)
(6.2)

= µ2 − Ncµ
4 + 2W 2

0 − 2µ2W 2
0 + O(µ8) (6.3)

hence, to good approximation, 〈φ0〉2 = µ2 for µ =
√

2 10−7, in agreement with the leading

order calculation in appendix B. At µ4 order this result depends on the cancellation of the

cosmological constant, requiring the equality of the F term contribution and −3W 2. Hence,

the one loop potential would shift 〈φ0〉2 by . µ4, even if it were independent of φ0 (as has

tacitly been assumed in [3, 9, 22] and [25]) and merely contributed to the cosmological

constant. Moreover, the one-loop potential proves to have a non-trivial dependence on

φ0 and, for h = 1, introduces a correction at the level of µ
1000 . It should be stressed

that this effect remains when the one-loop potential is purely supersymmetric, as long as

gravity is switched on in the tree level potential. For Λ = 1, Nf = 2 and Nc = 1 we

find 〈φ0〉 = 1.41042 10−7 if Vquad. is present and 〈φ0〉 = 1.41020 10−7 if it is not. In

contrast, these two results would be indistinguishable at this level of precision had only

the logarithmic corrections to Φ0’s potential been accounted for.
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Similarly to Φ0, Φ1’s logarithimic one-loop potential depends on the moduli expectation

values and, unlike the quarks, does not tend to the tree-level result as h → 0 (and Vquad.
is neglected). For Nf = 2, µ = 10−7, Λ = 1 and with Vquad. neglected we obtain 〈Φ1〉 =

−4.78 10−14 which differs by a factor of 5 compared to the leading order tree-level result

of 〈Φ1〉 = −W0 = −1.04 10−14 derived in appendix B. The results with Vquad. included

are closer as the tree-level + quadratic potential also gives 〈Φ1〉 = −W0 = −1.04 10−14,

and the full potential gives 〈Φ1〉 = −4.65 10−14.

7 Soft masses

It is well known that supergravity theories automatically include the gravitational media-

tion mechanism and soft-terms will be generated. The typical scale for these soft masses

is m3/2 with deviations being generated by non-trivial Kähler potentials. Also, gaugino

masses can be zero at tree-level, if the gauge kinetic function preserves supersymmetry.

Since we know the gravitational contributions must be present we now analyse the relative

importance of gauge and anomaly mediation and sketch the features of the spectrum.

Since the addition of a constant to the superpotential implies that 〈Φ〉 6= 0, in super-

gravity, we investigated the possibility that the R-symmetry violating, non-perturbative

piece could give masses to the gauginos. The determinant piece (2.4) can have a non-trivial

contribution to the ISS fields’ masses and, if we employed a direct mediation mechanism

analogous to, for example, [17], the R-symmetry breaking could in principle be transfered

to the MSSM sector. However, as we saw in table 1, the square of the scalar vev of Φ is

less than the F-term. Hence, Φ cannot be the ’X’ field9 that couples to the messengers

since, if 〈Φ〉 = M + Fθ2 then M2 < F , and, if 〈Φ〉 is the sole contributor to the messenger

masses, then they will be tachyonic (as shown in [18]).

However, the gravitational effects induce new F-terms that are not present in global

SUSY. Being generated gravitationally, they are always smaller than the F-terms of Φ0,

assuming the gravitational effects are under control.10 Since the magnetic squarks’ vevs are

∼ µ and their F-terms ∼ hµ3 they automatically satisfy the M2 > F condition, if h ≤ 1. An

example messenger sector would have the symmetry group SU(N)×SU(Nf )×SU(5)×U(1)R
and the fields would transform as follows: φ0 : (N,Nf , 1, 0), f : (N̄ , 1, 5, 1), f ′ : (1, N̄f , 5̄, 1).

The crucial observation is that two SUSY breaking scales are generated automatically,

if V = 0 is required. Hence the standard argument for the dominance of gauge mediation,

namely that F
M ≫ F

MP
, does not necessarily apply. Instead we have FΦ0

≫ Fφ0
and

Fφ0

〈φ0〉
∼ FΦ0

MP
. While it is true that

FΦ0

〈Φ0〉
≫ FΦ0

MP
, Φ0 cannot be allowed to couple to the

messengers because FΦ0
> 〈Φ0〉2.

The naive expression for the gaugino masses is given by:

9We have in mind an operator W ∋ Xff where f and f are messenger fields charged under the visible

sector gauge groups.
10Since the gravitational effects come in with an additional power of µ compared with the global SUSY

terms and the new F-terms are ∼ hµ3.
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mλ ∼ α

4π

Fφ0

〈φ0〉
∼ α

4π

h 〈φ0〉W0

〈φ0〉
∼ α

4π
hµ2 (7.1)

and the soft scalar mass squareds are approximately:

m2 = m2
λ. (7.2)

In addition we can estimate the soft mass contributions from anomaly mediation:

Ma = FAnom.βga/ga ∼ α

4π
FAnom. (7.3)

(m2)ij = F 2
Anom.

∂γi
j

∂t
∼ α2

16π2
F 2
Anom. (7.4)

Since FAnom. can at most be FΦ0
(without postulating another source of SUSY break-

ing) it follows that these contributions are of the same order of magnitude as those given

by gauge mediation.

This allows us to estimate the size of the gravitino mass, based on the requirement that

the gaugino masses be in the vicinity of a TeV and that the cosmological constant be tuned

to zero. These requirements imply that α
4π hµ2 ∼ 1 TeV ∼ 10−16 and thus hµ2 ∼ 4π

α 10−16.

Taking α = 1
26 [19] we find hµ2 ∼ 3 10−14, up to order one factors, and we see that

m3/2 ≃ eKhW0 ≃
(

h2Ncµ4

3

)1/2
and hence the gravitational contribution to the soft scalar

masses is automatically two orders of magnitude larger than the other contributions.

As mentioned earlier, the gravitational contribution to the gaugino masses is not nec-

essarily order m3/2. For example in string theories one can find that the gauge kinetic

functions, whose expectation values specify the gauge coupling constants, have a tree level

dependence on closed string moduli [20].11 Since pseudo-moduli are evidently not string

moduli, the tree-level gauge kinetic function does not have to depend on them. Hence, if

the string moduli (or any fields that appear in the gauge kinetic function) do not contribute

strongly to SUSY breaking12 then the gaugino masses will receive a negligible tree-level

contribution from gravity.

In summary, the models discussed here may naturally generate, via the gauge mediation

channel, a spectrum in which the gaugino masses are loop suppressed with respect to the

soft scalar masses. Since the gaugino masses receive unknown quantum corrections, we can-

not predict the precise spectrum, which depends on details of the complete model, though

11Unlike the pseudo-moduli discussed here, which only have flat directions at special points in field space,

these moduli have no potentials classically. Non-perturbative corrections are required to give string moduli

potentials, whereas pseudo-moduli have potentials at tree-level and the flat directions are removed at the

one-loop level.
12As we expect in certain racetrack models. For example the O’KKLT class of models [21] have finely-

tuned moduli sectors in which, when considered alone, have SUSY-preserving, De-Sitter minima. The

addition of an O’Raifeartaigh sector [10] (the possibility that this might be ISS was considered in [22])

spontaneously breaks SUSY and lifts the vacuum energy. Since the two sectors are decoupled at the global

level the moduli F-terms can be significantly smaller than the other fields’.
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we do expect to see a split in the spectrum of soft masses. This spectrum has much in com-

mon with the one presented in the early work on anomaly mediation. See, for example, [23].

In addition to this, one can consider modifying the model. For example, there are ex-

amples [17, 24–26] in which operators are added to the superpotential allowing the pseudo-

modulus vev to grow out to around µ. While this is clearly an interesting effect, the dual

theory responsible for generating this operator is as yet unknown.

8 Conclusions

In summary, ISS is more stable with supergravity corrections than without, assuming that

W0 = 0. The picture changes somewhat when W0 6= 0, but it was shown in section 4 that

the supergravity effects are under good theoretical control.

It was then demonstrated, in section 5 that, while the non-perturbative piece is non-

zero, it is necessarily sub-dominant for small values of Φ. Hence this term can be neglected

when supergravity effects are subdominant to the one-loop effects. Numerical analysis

confirmed this.

We also showed that the quadratically divergent, one-loop potential’s effects are small

and under control if Λ′N ′
f ≪ 1. We have constructed our theory such that supersymmetry

breaking is only generated by the ISS sector, to highlight the distinctive features of this

model. An example of a possible a high energy model was considered in [7], but we did not

attempt this kind of construction in this paper. Also, it is worth noting that it is consistent

to make use of the supergravity corrected effective potential, even though our cut-off can

be taken to be many orders of magnitude below. This is because the non-renormalisable

operators present in Sugra are not generated by the integration out of gravitational fields,

and are instead required to be present by supersymmetry itself.

The explicit R-breaking introduced by the presence of a constant term in the super-

potential allows the generation of non-zero gaugino masses, through gravitationally sup-

pressed interactions (as one would expect, since global SUSY is blind to the presence of

the constant).

We showed, in section 7, that in the absence of additional supersymmetric contributions

to messenger masses, the gauge mediation is only possible if the magnetic quarks couple to

the messenger fields. All other ISS fields have overly small scalar vevs and give rise to an

unstable messenger sector. The direct consequence of which is that the gravitino mass is

quite large. This is the case because it is not set by the quarks F-terms, but the much larger

meson F-terms, through the requirement that the cosmological constant should vanish in

the minimum of the effective potential. This results in a direct connection between R-

symmetry breaking and gaugino masses, with eq. (7.1) showing that they are proportional

to one another, with the coefficient being determined by the details of the gauge group.
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A Origins of mass terms

For simplicity we neglect phases in the following analysis. Hence all symmetries effectively

go from U(N) → O(N) and the counting of degrees of freedom reflects this.

In this case, the tree-level potential, when embedded into supergravity, has a meta-

stable minimum. The position of the minimum is given by the global result, but with small

corrections to the expectation value of the magnetic quarks |φ0|2 = |φ̃0|2 = µ2 − 1/2 ±
1
2 (1 − 4Ncµ

4)1/2 ∼ µ2 − Ncµ
4. This deviation from the global limit only comes from the

overall factor of EK multiplying the potential.13

The spectrum contains 2NfN magnetic quarks of which 1
2(2Nf N−N2−N) are massless

Goldstone bosons and the remainder have masses of order µ, 2NfN−N2 mesons with mass of

order µ, (Nf−N)2−1 mesons with mass of order µ2 and one massless pseudo-moduli meson.

The origins of these masses are as follows. The quarks get their masses from their

expectation values, with φ0 giving mass to φ̃0 and vice versa, the off-diagonal elements

of Φ0 obtain masses solely from the second derivative of eK (which contributes equally to

all fields), namely 2V , while the diagonal elements get more complicated contributions.

The remaining elements of Φ get the same masses as in global SUSY, but with small

corrections from the Sugra contributions. The end result of this is that the massive fields

retain essentially same masses as in global SUSY and all but one of the pseudo-moduli

(which remains zero) obtain masses of the order of the cosmological constant: 2Ncµ
4. This

demonstrates that supergravity serves to increase the stability of the ISS minimum, as it

reinforces the stabilising effects coming from the one loop potential.

B Analytical solutions

Here we present the approximate analytical expressions for the derivatives of the tree-level

and quadratic, one-loop potentials. Since both potentials can be written in terms of VF

and VW we compute the derivatives of these functions, taking the fields to be real.

∂VF

∂Φ1
= 2h2

(
φ̃0(φ̃0Φ1 + φ0W0) + φ0(φ0Φ1 + φ̃0W0) + W0(φ0φ̃0 − µ2)

)
+ O(µ6) ∼ h2µ4

(B.1)

∂VF

∂Φ0
= −2h2W0µ

2 + O(µ6) ∼ h2µ4 (B.2)

∂VF

∂φ0
= 2h2φ̃0(φ0φ̃0 − µ2) + O(µ5) ∼ h2µ3 (B.3)

The derivatives of VW = −3eKW 2 are easily computed and given below, again taking

13In the limit where Φ → 0 and W → 0 all contributions aside from the overall exponential vanish.
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the fields to be real

∂VW

∂Φ1
= −6h2W0(φ̃0φ0 − µ2) + O(µ6) ∼ h2µ4 (B.4)

∂VW

∂Φ0
= 6h2W0µ

2 + O(µ6) ∼ h2µ4 (B.5)

∂VW

∂φ0
= −3h2W0φ̃0Φ0 − 3h2φ0W

2
0 + O(µ7) ∼ h2µ5 (B.6)

Hence we see that while both Φ0 and Φ1 depend directly on W , φ0 does not. This

implies that it will remain at the global SUSY minimum, up to corrections induced by the

logarithmic piece.

We can make use of the global expression for the logarithmic contribution to Φ0’s

potential,

Vlog =
h4µ2(log(4) − 1)

8π2
Tr(Φ0)

2 (B.7)

and estimate Φ0’s expectation value, without the quadratic contribution,

〈Φ0〉 =
16π2W0

h2(log(4) − 1)
+ O(µ4), (B.8)

This is one of the results previously obtained in, for example [9], under the assumption

that the one-loop potential presented in [1] was valid away from the minimum in which it

was derived and that the potential for Φ1 and φ0 is flat. However, we show numerically

that neither of these assumptions are valid, given h ∼ 1, and hence the one-loop potential

plays a more significant role than has been previously discussed.

While we do not have estimates for the logarithmic contributions for Φ1, φ0 and φ̃0,

we can obtain the tree-level expectation values,

〈Φ1〉 =
−µ2W0

φ0φ̃0

+ O(µ4) (B.9)

and

〈φ0〉 =
〈
φ̃0

〉
= µ + O(µ3) (B.10)

and from this point forward we take φ0 = φ̃0. Eq. (B.10) and eq. (B.9) give

〈Φ1〉 = −W0 + O(µ4). (B.11)

In addition to this, we can compute the effects of the quadratic, one-loop potential.

Taking eq. (4.4) and ignoring the log piece, we obtain

Vtree + Vquad. =
(
N ′

fΛ′2 + 1
)
VF − (3 + 2Λ′2(N ′

f + 1))eKW 2. (B.12)
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First we observe that 〈φ0〉 will be unchanged as the quadratic contribution, at leading
order, simply increases the coefficient of VF from 1 to 1 + Λ′2N ′

f .

∂(Vtree + Vquad.)

∂Φ1

= 4h2(N ′

fΛ′2 + 1)φ2

0Φ1 + 2h2φ2

0W0(N
′

f − 2)Λ′2 + 2h2µ2W0(2 + 2Λ′2 + N ′

fΛ′2)

(B.13)

∂(Vtree + Vquad.)

∂Φ0

= 4h2W0µ
2

(
1 +

Λ′2

2
(N ′

f + 2)

)
+ O(µ6) ∼ h2µ4 (B.14)

and hence

〈Φ0〉 =
16π2W0(1 + Λ′2

2 (N ′
f + 2))

h2(log(4) − 1)
+ O(µ4) (B.15)

and

〈Φ1〉 =
−W0(φ

2
0Λ

′2(N ′
f − 2) + µ2(2 + 2Λ′2 + N ′

fΛ′2)

2φ2
0(N

′
fΛ′2 + 1)

+ O(µ4) = −W0 + O(µ4). (B.16)

It is interesting to note that the quadratic potential reinforces the tree-level solution,

since, when φ0 → µ, they have the same form. We confirm this in section 6.1.
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